MParT: Monotone Parameterization Toolkit

Scaling Measure Transport for High-dimensional Conditional Inference Problems

Daniel Sharp ${ }^{1} \quad$ Matthew Parno ${ }^{2}$ Michael Brennan ${ }^{1} \quad$ Youssef Marzouk ${ }^{1}$
${ }^{1}$ Massachusetts Institute of Technology
${ }^{2}$ Solea Energy
February 28, 2024

[^0]
Measure Transport

Why solve this?

- Variational Inference
- Generative Modeling
- Density Estimation
- Data Assimilation

Conditional Sampling/Simulation-based Inference

Why solve this?

- Variational Inference
- Generative Modeling
- Density Estimation
- Data Assimilation
- Conditional Sampling/Simulation-based Inference

Why solve this?

- Variational Inference
- Generative Modeling
- Density Estimation

$$
\pi_{X \mid Y} \propto \pi_{Y \mid X} \pi_{X}
$$

- Data Assimilation
- Conditional Sampling/Simulation-based Inference

Problem to Solve

$$
S_{n}(\mathbf{x}) \text { s.t. } \frac{\partial}{\partial x_{n}} S_{n}\left(\mathbf{x}_{1: n-1}, x_{n}\right)>0
$$

$$
S(\mathbf{x})=\left[\begin{array}{c}
S_{1}\left(x_{1}\right) \\
S_{2}\left(x_{1}, x_{2}\right) \\
\vdots \\
S_{n}\left(\mathbf{x}_{1: n-1}, x_{n}\right)
\end{array}\right]
$$

$$
\nabla S(\mathbf{x})=\left[\begin{array}{cccc}
\partial_{1} S_{1} & 0 & \cdots & 0 \\
\partial_{1} S_{2} & \partial_{2} S_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
\partial_{1} S_{n} & \partial_{2} S_{n} & \cdots & \partial_{n} S_{n}
\end{array}\right]
$$

Why triangular? (Computational)

$$
\begin{aligned}
S_{1}\left(X_{1}\right)=Z_{1}^{*} & X_{1}=S_{1}(\cdot)^{-1}\left(Z_{1}^{*}\right) \\
S_{2}\left(X_{1}, X_{2}\right)=Z_{2}^{*} & X_{2}=S_{2}\left(X_{1}, \cdot\right)^{-1}\left(Z_{2}^{*}\right) \\
S_{3}\left(X_{1}, X_{2}, X_{3}\right)=Z_{3}^{*} & X_{3}=S_{3}\left(X_{1}, X_{2}, \cdot\right)^{-1}\left(Z_{3}^{*}\right)
\end{aligned}
$$

Why triangular? (Computational)

$$
S_{3}\left(X_{1}, X_{2}, X_{3}\right)=Z_{3}^{*} \quad X_{3}=S_{3}\left(X_{1}, X_{2}, \cdot\right)^{-1}\left(Z_{3}^{*}\right)
$$

Why triangular? (Computational)

Why triangular? (Principle)

$$
S_{n}\left(\mathbf{X}_{1: n-1}^{*}, X_{n}\right)=Z_{n} \quad S_{n}\left(\mathbf{X}_{1: n-1}^{*}, \cdot\right)^{-1}\left(Z_{n}\right)=X_{n} \sim \pi_{X_{n} \mid \mathbf{X}_{1: n-1}^{*}}
$$

What do we want?

- Finite training budget (i.e., "Training is not most expensive part")
- Fast evaluation and training for usage online or in loop-based inference
- Reliable, reproducible results
- Well-understood approximation theory

What do we want?

- Finite training budget (i.e., "Training is not most expensive part")
- Fast evaluation and training for usage online or in loop-based inference
- Reliable, reproducible results
- Well-understood approximation theory

What MParT Brings (Software)

- Fast, parallel, efficient Kokkos-based C++ (on device)
- Easy installation with bindings to Python, Matlab, and Julia

PyTorch integration

Out-of-the-box training with NLOpt

Easy serialization

Test-driven development, GitHub Cl

Documentation + tutorials

```
$ pip install mpart
$ conda install conda-forge::mpart
julia> ]add MParT
$ cd build && cmake
```


What MParT Brings (Software)

- Fast, parallel, efficient Kokkos-based C++ (on device)
- Easy installation with bindings to Python, Matlab, and Julia
- PyTorch integration
- Out-of-the-box training with NLOpt
- Easy serialization
- Test-driven development, GitHub Cl
- Documentation + tutorials

```
$ pip install mpart
$ conda install conda-forge::mpart
julia> ] add MParT
$ cd build && cmake
```


What MParT Brings (Approximation)

- Fast multivariate expansions and multi-index computation
- Specialized numerical quadrature and root-finding (on device)
- Evaluation, inversion, Jacobian-vector product, parameter gradients...
- Efficient map composition
- Adaptive multi-index set facilities

Small Example

Small Example

How to find S ?

$$
\begin{gathered}
\mathcal{J}(S)=D_{K L}\left(\pi \| S^{\sharp} \rho\right) \\
\mathcal{J}_{n}\left(S_{n}\right)=\sum_{i=1}^{N}\left[\frac{1}{2} S_{n}\left(\mathbf{x}^{(i)}\right)^{2}-\log \partial_{n} S_{n}\left(\mathbf{x}^{(i)}\right)\right]
\end{gathered}
$$

What gives us efficiency?

- Rectified integration

$$
\begin{gathered}
\log \partial_{n} S_{n}(\mathbf{x})=\sum_{\vec{\alpha}} c_{\vec{\alpha}} \Psi_{\vec{\alpha}}(\mathbf{x})=: g(\mathbf{x}) \\
\Rightarrow S_{n}(\mathbf{x})=g\left(\mathbf{x}_{1: n-1}, 0\right)+\int_{0}^{x_{n}} r\left(g\left(\mathbf{x}_{1: n-1}, t\right)\right) d t, r(\cdot)>0
\end{gathered}
$$

- Rectified expansion (NEW)

What gives us efficiency?

- Rectified integration

$$
\begin{gathered}
\log \partial_{n} S_{n}(\mathbf{x})=\sum_{\vec{\alpha}} c_{\vec{\alpha}} \Psi_{\vec{\alpha}}(\mathbf{x})=: g(\mathbf{x}) \\
\Rightarrow S_{n}(\mathbf{x})=g\left(\mathbf{x}_{1: n-1}, 0\right)+\int_{0}^{x_{n}} r\left(g\left(\mathbf{x}_{1: n-1}, t\right)\right) d t, r(\cdot)>0
\end{gathered}
$$

- Rectified expansion (NEW)

$$
S_{n}(\mathbf{x})=g_{1}\left(\mathbf{x}_{1: n-1}\right)+\sum_{\vec{\beta}} c_{\vec{\beta}} r\left(\Psi_{\vec{\beta}}\left(\mathbf{x}_{1: n-1}\right)\right) s_{\beta_{n}}\left(x_{n}\right), \quad s_{\beta_{y}}^{\prime}(x)>0
$$

Scalability

- 1000 dimensions
- Max order 10
- Multi-indices:

$$
g(\mathbf{x})=\sum_{i, j=1}^{d, p} c_{i j} \psi_{i}\left(x_{j}\right)
$$

- 10k parameters, 16 core CPU

$$
\begin{array}{r}
A+2 X \underset{k_{2}}{\stackrel{k_{1}}{\rightleftharpoons}} 3 X \\
B \underset{k_{4}}{\stackrel{k_{3}}{\rightleftharpoons}} X
\end{array}
$$

Sampling a stochastic process

Chemical reaction kinetics
[Sargsyan et al. 09]

Karhunen Loeve Expansion

$$
u(t, \omega)=\mu(t)+\sum_{j=1}^{\infty} \sqrt{\lambda_{j}} \psi_{j}(t) X_{j}(\omega)
$$

- ψ_{j} orthogonal
- X_{j} uncorrelated, mean 0 , variance 1
- We can estimate $\mu, \lambda_{j}, \psi_{j}$ from samples
- We virtually never know how to sample X!

Karhunen Loeve Expansion

$$
u(t, \omega)=\mu(t)+\sum_{j=1}^{\infty} \sqrt{\lambda_{j}} \psi_{j}(t) X_{j}(\omega)
$$

- ψ_{j} orthogonal
- X_{j} uncorrelated, mean 0 , variance 1
- We can estimate $\mu, \lambda_{j}, \psi_{j}$ from samples
- We virtually never know how to sample X !

What if...

$$
\sqrt{\lambda_{j}} X_{j}=\left\langle u-\mu, \psi_{j}\right\rangle
$$

What if...

$$
\begin{gathered}
\sqrt{\lambda_{j}} X_{j}=\left\langle u-\mu, \psi_{j}\right\rangle \\
u(t, \omega) \approx \widehat{u}(t, \omega)=\mu(t)+\sum_{j=1}^{\infty} \psi_{j}(t) S^{-1}(\mathbf{Z}(\omega))
\end{gathered}
$$

-
$*$
$*$
$*$
$*$

1

Results

```
minOrder, firstOrders=4, [15, 10]
multiindex_sets, opts = KLE_multi_index_setup(dim, minOrder, firstOrders)
map_components = [CreateComponent(mset, opts) for mset in multiindex_sets]
trimap = TriangularMap(map_components)
obj = CreateGaussianKLObjective(samples)
train_opts = TrainOptions()
TrainMap(trimap, obj, train_opts)
```


Conditional Sampling

$$
S\left(u\left(t^{*}, \omega\right), X_{1}, \ldots\right)
$$

Conditional Sampling

$$
S\left(u\left(t^{*}, \omega\right), X_{1}, \ldots\right)
$$

-

Training Samples

- Pullback
- Conditioned Sample

Actual Samples

2-4

Conditional, Generated Samples

Conclusions and Future Work

- Scalable to problems yet unseen in triangular transport
- Improve implementation efficiency further
- Tailor optimization to parameterizations
- Improve GPU bindings
- Flexible for many use-cases without sacrificing performance
- Allow user-specified functions and bases (e.g., Neural-net)
- Incorporate built-in training for 'map-from-density'
- Easily apply maps or experiment with high-level transport algorithms
- Incorporate fast quadrature for targets

All presented materials are available at

Conclusions and Future Work

- Scalable to problems yet unseen in triangular transport
- Improve implementation efficiency further
- Tailor optimization to parameterizations
- Improve GPU bindings
- Flexible for many use-cases without sacrificing performance

■ Allow user-specified functions and bases (e.g., Neural-net)
■ Incorporate built-in training for 'map-from-density'

```
Easily apply maps or experiment with high-level transport algorithms
- Incorporate fast quadrature for targets
```

All presented materials are available at

Conclusions and Future Work

- Scalable to problems yet unseen in triangular transport
- Improve implementation efficiency further
- Tailor optimization to parameterizations
- Improve GPU bindings
- Flexible for many use-cases without sacrificing performance

■ Allow user-specified functions and bases (e.g., Neural-net)
■ Incorporate built-in training for 'map-from-density'

- Easily apply maps or experiment with high-level transport algorithms
- Incorporate fast quadrature for targets
- All presented materials are available at dsharp.dev/uq24

References I

[1] Matthew Parno, Paul-Baptiste Rubio, Daniel Sharp, Michael Brennan, Ricardo Baptista, Henning Bonart, and Youssef Marzouk. "MParT: Monotone Parameterization Toolkit". In: Journal of Open Source Software 7.80 (2022), p. 4843.
[2] Youssef Marzouk, Tarek Moselhy, Matthew Parno, and Alessio Spantini. "An introduction to sampling via measure transport". In: arXiv preprint arXiv:1602.05023 (2016).
[3] Khachik Sargsyan, Bert Debusschere, Habib Najm, and Olivier Le Matre. "Spectral representation and reduced order modeling of the dynamics of stochastic reaction networks via adaptive data partitioning". In: SIAM Journal on Scientific Computing 31.6 (2010), pp. 4395-4421.
[4] Khachik Sargsyan, Bert Debusschere, and Habib Najm. "Spectral Representation and Reduced Order Modeling of Stochastic Reaction Networks". In: ().
[5] Fengyi Li et al. "A combinatorial approach to goal-oriented optimal Bayesian experimental design". PhD thesis. Massachusetts Institute of Technology, 2019.

Backup Slides (Tailored Optimization)

$$
\begin{aligned}
& S_{n}\left(\mathbf{x} ; \mathbf{c}_{1}, \mathbf{c}_{2}\right):=\Psi_{1}\left(\mathbf{x}_{1: n-1}\right) \mathbf{c}_{1}+f\left(\mathbf{x}, \mathbf{c}_{2}\right) \\
\mathcal{J}_{n}\left(S_{n}\right)= & \sum_{i=1}^{N}\left[\Psi_{1}\left(\mathbf{x}_{1: n-1}^{(i)}\right) \mathbf{c}_{1}+f\left(\mathbf{x}^{(i)}, \mathbf{c}_{2}\right)\right]^{2}-\mathcal{L}\left(\mathbf{X}, \mathbf{c}_{2}\right) \\
= & \left\|\mathbf{A}(\mathbf{X}) \mathbf{c}_{1}+\mathbf{f}\left(\mathbf{X}, \mathbf{c}_{2}\right)\right\|^{2}-\mathcal{L}\left(\mathbf{X}, \mathbf{c}_{2}\right) \\
\widehat{\mathbf{c}}_{1}= & \left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{f}\left(\mathbf{X}, \widehat{\mathbf{c}}_{2}\right) \\
\widehat{\mathbf{c}}_{2}= & \arg \min _{\mathbf{c}_{2}}\left\|\left(\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1}+\mathbf{I}\right) \mathbf{f}\left(\mathbf{X}, \mathbf{c}_{2}\right)\right\|^{2}-\mathcal{L}\left(\mathbf{X}, \mathbf{c}_{2}\right)
\end{aligned}
$$

Backup Slides (Fast Quadrature)

- Assume same Gauss-Hermite quadrature in each dimension, $\left\{\left(z_{i}, w_{i}\right)\right\}$.
- Create tensor product grid $\left\{\mathbf{z}_{\vec{\alpha}}\right\}$
- Note $x_{1}^{(\vec{\alpha})}=S_{1}^{-1}\left(\mathbf{z}_{\vec{\alpha}}\right)=S_{1}^{-1}\left(z_{\alpha_{1}}\right)$ for any $\vec{\alpha}$
- Similarly, $x_{2}^{(\vec{\alpha})}=S_{2}\left(x_{1}^{(\vec{\alpha})}, \cdot\right)^{-1}\left(z_{(\vec{\alpha})}\right)$
- By induction, we can reduce the number of transport map evaluations by an order of magnitude at each dimension.

Backup Slides (KL Spectrum)

[^0]: ${ }^{1}$ Matthew Parno, Paul-Baptiste Rubio, Daniel Sharp, Michael Brennan, Ricardo Baptista, Henning Bonart, and Youssef Marzouk. "MParT: Monotone Parameterization Toolkit". In: Journal of Open Source Software 7.80 (2022), p. 4843.

